翻訳と辞書
Words near each other
・ Dual module
・ Dual monarchy
・ Dual monarchy of England and France
・ Dual Mono
・ Dual naming
・ Dual narrative
・ Dual norm
・ Dual number
・ Dual object
・ Dual of BCH is an independent source
・ Dual Orb
・ Dual Orb II
・ Dual overhead rate
・ Dual oxidase 1
・ Dual oxidase 2
Dual pair
・ Dual Peppy
・ Dual Phase Steels Magnetism Modeling
・ Dual photography
・ Dual piping
・ Dual pivot steering geometry
・ Dual player
・ Dual Plover
・ Dual polygon
・ Dual polyhedron
・ Dual power
・ Dual process theory
・ Dual process theory (moral psychology)
・ Dual processor
・ Dual q-Hahn polynomials


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dual pair : ウィキペディア英語版
Dual pair

In functional analysis and related areas of mathematics a dual pair or dual system is a pair of vector spaces with an associated bilinear map to the base field.
A common method in functional analysis, when studying normed vector spaces, is to analyze the relationship of the space to its continuous dual, the vector space of all possible continuous linear forms on the original space. A dual pair generalizes this concept to arbitrary vector spaces, with the duality being expressed as a bilinear map. Using the bilinear map, semi norms can be constructed to define a polar topology on the vector spaces and turn them into locally convex spaces, generalizations of normed vector spaces.
==Definition==
A dual pair is a 3-tuple (X,Y,\langle , \rangle) consisting of two vector spaces X and Y over the same field F and a bilinear map
:\langle , \rangle : X \times Y \to F
with
:\forall x \in X \setminus \ \quad \exists y \in Y : \langle x,y \rangle \neq 0
and
:\forall y \in Y \setminus \ \quad \exists x \in X : \langle x,y \rangle \neq 0
We call \langle , \rangle the duality pairing, and say that it puts X and Y in duality.
When the two spaces are a vector space X (or a module over a ring in general) and its dual X^
*, we call the canonical duality pairing \langle \cdot,\cdot \rangle : X^
* \times X \rarr F : (\varphi, x) \mapsto \varphi(x) the natural pairing.
We call two elements x \in X and y \in Y orthogonal if
:\langle x, y\rangle = 0.
We call two sets M \subseteq X and N \subseteq Y orthogonal if each pair of elements from M and N are orthogonal.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dual pair」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.